• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität Chair of Optical Quantum Technologies
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Naturwissenschaftliche Fakultät
  3. Department Physik
Suche öffnen
  • Campo
  • StudOn
  • FAUdir
  • Jobs
  • Map
  • Help
  1. Friedrich-Alexander-Universität
  2. Naturwissenschaftliche Fakultät
  3. Department Physik
Friedrich-Alexander-Universität Chair of Optical Quantum Technologies
Navigation Navigation close
  • News
  • Research
    • Free Space Quantum Communication and Quantum Sensing
    • Practical Quantum Security and CubeSats — New Frontiers in Quantum Communication
    • Quantum Networks
    • Quantum Photonics Theory
    • Quantum Sources
    • Satellite-based quantum key distribution (QKD)
    Portal Research
  • Education
  • Publications
  • Team
  • Open Positions
  • Contact and Location
  1. Home
  2. Research
  3. Quantum Photonics Theory

Quantum Photonics Theory

In page navigation: Research
  • Free Space Quantum Communication and Quantum Sensing
  • Practical Quantum Security and CubeSats — New Frontiers in Quantum Communication
  • Quantum Networks
  • Quantum Photonics Theory
  • Quantum Sources
  • Satellite-based quantum key distribution (QKD)

Quantum Photonics Theory

Contact

Andrea Aiello

Dr. Andrea Aiello

Chair of Optical Quantum Technologies

Staudtstraße 2
91058 Erlangen
  • Email: andrea.aiello@mpl.mpg.de
  • Website: https://www.oqt.nat.fau.de/
Christoph Marquardt

Prof. Dr. Christoph Marquardt

Chair of Optical Quantum Technologies

Room: Room 01.425
Staudtstraße 7 / A3
91058 Erlangen
  • Phone number: +49 9131 85-71232
  • Email: christoph.marquardt@fau.de
  • Website: https://www.oqt.nat.fau.de/
Sketch of a typical EPR-like experiment with entangled photon pairs. The source S emits pairs of photons, A and B, in an entangled polarization state. These photons propagate along towards Alice and Bob, who can measure their polarization.

The Quantum Photonic Theory group focuses on both supporting experimental research within the Chair for Optical Quantum Technologies and conducting its own studies in quantum information theory. By developing theoretical models and analytical tools, the group provides essential insights that guide and complement experimental efforts in quantum photonics.

One of the primary areas of research is Quantum Key Distribution (QKD), a cornerstone of secure quantum communication. The group is particularly involved in improving reconciliation methods for discrete-modulated continuous-variable quantum key distribution (DM-CV-QKD) systems. This work is closely integrated with experimental research carried out by the “Quantum Networks” and “Free Space Quantum Communication and Quantum Sensing” groups, aiming to enhance the reliability and efficiency of quantum communication protocols.

Beyond applied research, the group also delves into foundational aspects of quantum mechanics. More than a century after its development, quantum mechanics continues to raise profound questions about the nature of reality. The group investigates key conceptual issues, such as wave-particle duality and Bell’s theorem, which challenge classical intuitions and deepen our understanding of quantum theory. Through this combination of applied and theoretical research, the Quantum Photonic Theory group contributes to advancing both the practical applications and fundamental insights of quantum science.

    • Berg-Johansen S., Neugebauer M., Aiello A., Leuchs G., Banzer P., Marquardt C.:
      Microsphere kinematics from the polarization of tightly focused nonseparable light
      In: Optics Express 29 (2021), p. 12429-12439
      ISSN: 1094-4087
      DOI: 10.1364/OE.419540
    • Chille V., Treps N., Fabre C., Leuchs G., Marquardt C., Aiello A.:
      Detecting the spatial quantum uncertainty of bosonic systems
      In: New Journal of Physics 18 (2016), Article No.: 093004
      ISSN: 1367-2630
      DOI: 10.1088/1367-2630/18/9/093004
    • Berg-Johansen S., Töppel F., Stiller B., Banzer P., Ornigotti M., Giacobino E., Leuchs G., Aiello A., Marquardt C.:
      Classically entangled optical beams for high-speed kinematic sensing
      In: Optica 2 (2015), p. 864-868
      ISSN: 2334-2536
      DOI: 10.1364/OPTICA.2.000864
    • Aiello A., Töppel F., Marquardt C., Giacobino E., Leuchs G.:
      Quantum-like nonseparable structures in optical beams
      In: New Journal of Physics 17 (2015), Article No.: 043024
      ISSN: 1367-2630
      DOI: 10.1088/1367-2630/17/4/043024
    • Korger J., Aiello A., Chille V., Wittmann C., Lindlein N., Marquardt C., Leuchs G.:
      Observation of the Geometric Spin Hall Effect of Light
      In: Physical Review Letters 112(11) (2014), p. 113902
      ISSN: 0031-9007
    • Holleczek A., Aiello A., Gabriel C., Marquardt C., Leuchs G.:
      Classical and quantum properties of cylindrically polarized states of light
      In: Optics Express 19 (2011), p. 9714-9736
      ISSN: 1094-4087
      DOI: 10.1364/OE.19.009714
    • Aiello A., Lindlein N., Marquardt C., Leuchs G.:
      Transverse Angular Momentum and Geometric Spin Hall Effect of Light
      In: Physical Review Letters 103 (2009), p. 100401
      ISSN: 0031-9007
      DOI: 10.1103/PhysRevLett.103.100401
Friedrich-Alexander-Universität Erlangen-Nürnberg
Chair of Optical Quantum Technologies

Staudtstraße 7 / A3
91058 Erlangen
  • Imprint
  • Privacy
  • Accessibility
  • Facebook
  • RSS Feed
  • Twitter
  • Xing
Up