• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität Chair of Optical Quantum Technologies
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Naturwissenschaftliche Fakultät
  3. Department Physik
Suche öffnen
  • Campo
  • StudOn
  • FAUdir
  • Jobs
  • Map
  • Help
  1. Friedrich-Alexander-Universität
  2. Naturwissenschaftliche Fakultät
  3. Department Physik
Friedrich-Alexander-Universität Chair of Optical Quantum Technologies
Navigation Navigation close
  • News
  • Research
    • Free Space Quantum Communication and Quantum Sensing
    • Practical Quantum Security and CubeSats — New Frontiers in Quantum Communication
    • Quantum Networks
    • Quantum Photonics Theory
    • Quantum Sources
    • Satellite-based quantum key distribution (QKD)
    Portal Research
  • Education
  • Publications
  • Team
  • Open Positions
  • Contact and Location
  1. Home
  2. Research
  3. Quantum Sources

Quantum Sources

In page navigation: Research
  • Free Space Quantum Communication and Quantum Sensing
  • Practical Quantum Security and CubeSats — New Frontiers in Quantum Communication
  • Quantum Networks
  • Quantum Photonics Theory
  • Quantum Sources
  • Satellite-based quantum key distribution (QKD)

Quantum Sources

Contact

Thomas Dirmeier

Thomas Dirmeier

Chair of Optical Quantum Technologies

Staudtstraße 2
91058 Erlangen
  • Email: thomas.dirmeier@mpl.mpg.de
  • Website: https://www.oqt.nat.fau.de/
Christoph Marquardt

Prof. Dr. Christoph Marquardt

Chair of Optical Quantum Technologies

Room: Room 01.425
Staudtstraße 7 / A3
91058 Erlangen
  • Phone number: +49 9131 85-71232
  • Email: christoph.marquardt@fau.de
  • Website: https://www.oqt.nat.fau.de/
Crystalline WGMR with diamond incoupling prism. The green pump light is focused onto the base of the diamond coupled via evanescent coupling into the resonator. Scattering nicely shows the path of the beams.

Quantum sources are the base of quantum communication and technologies. In this group, we design quantum sources to generate specific quantum states tailored to application requirements. This adaptive generation ensures optimal performance in diverse scenarios, from long-distance data transmission to localized quantum computing tasks. Our research focuses on developing sources of quantum light, exploiting non-linear optical effects in their generation. For example, we fabricate crystalline whispering gallery mode resonators (WGMR) in order realize narrow-band and tunable parametric down-conversion sources or we use other wave-guiding structures such as crystalline waveguide or optical fibers to generate and measure squeezed states of light.

In WGMR, resonant optical cavities are used to produce non-classical light, exploiting the phenomenon of light waves traveling around a cavity’s circumference. This enables efficient generation of quantum states with a narrow bandwidth in terms of frequency. This makes them highly compatible with single atoms or other memory systems. Moreover, WGMR are compact and energy-efficient, which makes them potential sources when space and available power are limited.

Optical fibers guide light over long distances with minimal loss, ideal for quantum communication networks. Exploiting the optical Kerr-effect in glass fibers, it is possible to reliably generate squeezed states of light without requiring involved stabilization schemes. This relative experimental ease alongside their robustness and reliability makes fiber-based squeezing sources excellent choices in scenarios with adverse ambient conditions, e.g. free-space quantum key distribution.

    • Huang SH., Dirmeier T., Shafiee G., Laiho K., Strekalov DV., Leuchs G., Marquardt C.:
      Polarization-entangled photons from a whispering gallery resonator
      In: npj Quantum Information 10 (2024), Article No.: 85
      ISSN: 2056-6387
      DOI: 10.1038/s41534-024-00876-z
    • Dirmeier T., Tiedau J., Khan I., Ansari V., Müller C., Silberhorn C., Marquardt C., Leuchs G.:
      Distillation of squeezing using an engineered pulsed parametric down-conversion source
      In: Optics Express 28 (2020), p. 30784-30796
      ISSN: 1094-4087
      DOI: 10.1364/OE.402178
    • Otterpohl A., Sedlmeir F., Vogl U., Dirmeier T., Shafiee G., Schunk G., Strekalov DV., Schwefel H., Gehring T., Andersen UL., Leuchs G., Marquardt C.:
      Squeezed vacuum states from a whispering gallery mode resonator
      In: Optica 6 (2019), p. 1375-1380
      ISSN: 2334-2536
      DOI: 10.1364/OPTICA.6.001375
    • Mueller CR., Peuntinger C., Dirmeier T., Khan I., Vogl U., Marquardt C., Leuchs G., Sanchez-Soto LL., Teo YS., Hradil Z., Rehacek J.:
      Evading Vacuum Noise: Wigner Projections or Husimi Samples?
      In: Physical Review Letters 117 (2016), Article No.: 070801
      ISSN: 0031-9007
      DOI: 10.1103/PhysRevLett.117.070801
    • Schunk G., Vogl U., Strekalov DV., Förtsch M., Sedlmeir F., Schwefel H., Göbelt M., Christiansen S., Leuchs G., Marquardt C.:
      Interfacing transitions of different alkali atoms and telecom bands using one narrowband photon pair source
      In: Optica 2 (2015), p. 773-778
      ISSN: 2334-2536
      DOI: 10.1364/OPTICA.2.000773
    • Förtsch M., Fürst J., Wittmann C., Strekalov D., Aiello A., Chekhova MV., Leuchs G., Silberhorn C., Marquardt C.:
      A versatile source of single photons for quantum information processing
      In: Nature Communications 4 (2013), Article No.: 1818
      ISSN: 2041-1723
      DOI: 10.1038/ncomms2838
Friedrich-Alexander-Universität Erlangen-Nürnberg
Chair of Optical Quantum Technologies

Staudtstraße 7 / A3
91058 Erlangen
  • Imprint
  • Privacy
  • Accessibility
  • Facebook
  • RSS Feed
  • Twitter
  • Xing
Up